期刊正文


一元一次方程解应用题难点突破技巧

 

【作者】 龙 俊

【机构】 贵州省都匀市匀东中学

【摘要】

【关键词】
【正文】列一元一次方程解应用题,既是七年级上学期数学的重点,又是教师教学的难点,并且是运用初中数学知识解决实际问题的重要素材,它对于培养及提高学生的思维能力和分析能力具有重要的意义。那么,怎样才能使七年级的学生学好“列一元一次方程解应用题”呢?通过这几年的实际教学经验,笔者就此谈谈自己在教学中突破这些的方法。 
  一、要让学生感觉到代数解法的优越性 
  初列方程,对学生来说确实不适应,这就要求教师在教学中运用例题对算术法和代数法作比较,找出两种方法的特点,让学生认识到代数解法的优点,反复训练,使学生逐渐体会到代数法的妙处。 
  例如:把一些图书分给某个班学生阅读,如果每人分3本,则剩余20本,如果每人分4本,则还缺25本,这个班有多少学生?算术法:(20+25)/(4-3)=45(人)这对一般学生来说,是很难做到的。代数法分析:设这个班有x名学生,共分出3x本,加上剩余20本,这批书共有(3x+20)本,每人分4本,需要4x本,减去缺的25本,这些书共有(4x-25)本。等量关系:第一种分法书的总量=第二种分法书的总量 
  解:设这个班有x名学生,根据题意得
  3x+20=4x-25 
  解得:x=45。 
  答:这个班有45名学生。 
  二、教会学生自己寻找相等关系 
  列方程解应用题一般有五步:弄清题意,找出能够表示应用题全部含义的相等关系,设出未知数进而列出方程,解这个方程,答。其中最关键的一步是正确找出“能够表示应用题全部含义的相等关系”。在应用题中,相等关系主要有两类:一类是题目给出条件的等量关系,如教材中的“等积变形”问题,“行程”问题等,可按事物发展的顺序来找等量关系。 
  如:将一个底面直径是10厘米,高为36厘米的“瘦长”形圆柱锻压成底面直径为20厘米的“矮胖”形圆柱,高变成了多少? 
  这是一个典型的等积变形问题,不管锻压前还是锻压后,总有下面的等量关系:
  锻压前的体积=锻压后的体积另一类是可在事物之间的内在联系中找到相等关系,如“工作问题”—“浓度问题”等就要在问题的内在联系中去找等量关系。 
  如:要把150克浓度为95%的硫酸溶液加水稀释成35%的稀硫酸溶液,需要加多少水? 
  这一问题中,由于是在原来的硫酸溶液中又加入一部分水,虽说总重量和浓度都变了,但是纯硫酸(溶质)的重量却没有变,于是即有下面的相等关系: 
  加水前纯硫酸的重量=加水后纯硫酸的重量 
  三、列方程解应用题常用的分析方法
  1.代数式法 
  用代数式将题目中的数量及数量之间的关系表示出来,找到相等关系,列出方程。如:“数字”问题,“和、差、倍、分“问题等多运用这种方法。 
  2.图示法 
  有些问题可以用示意图表示出题目中的条件及它们之间的关系,这类问题可以通过画出图形,可由图中有关基本量的内在联系找到相等关系,列出方程,如行程问题、等积问题多运用这种方法。 
  3.表格法 
  我们可将题目中有关数量及其关系填在设计的表格中,然后根据表格逐层分析,由各量之间的内在联系找到相等关系,列出方程,如“日历中的方程”问题、“浓度配比”问题及其它条件较多的题目多运用这种方法。 
  四、指导学生掌握设未知数的技巧和方法 
  应用题中,如果未知量特别多时,我们若能巧妙地设未知数,可以给列方程带来很大方便。设未知数是列方程解应用题的第一步,对含有多个未知量而又只允许设一个未知数的问题时,选择适当的未知量设为未知数直接关系到列方程的难易程度。一般来说,有两种设法:一种是直接设法,就是题目怎样问,就怎样设。这种方法主要用于简单的问题中,如:小颖种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高约5厘米,大约几周后树苗长高到1米?这个问题就宜采用直接设法;另一种是间接设法。有些问题,若采用直接设法,会给列方程增加麻烦,就采用间接设法。如一个两位数,各位上的数字之和是7,若把它们十位上的数字与个位上的数字对换,所得的两位数比原来的两位数大27,求这个两位数?此问题就应选用间接设法。 
  总之,列方程解应用题虽然是七年级教学中的一个难点,但是,只要我们认真分析,具体问题具体对待,就一定能掌握列一元一次方程解应用题的方法和技巧。 
  • 【发布时间】2018/4/3 9:51:53
  • 【点击频次】501