浅谈小学数学学习方法的指导
【关键词】 ;
【正文】 在小学阶段,学生学习数学的方法一般指其接受和巩固数学知识、形成数学能力、解决数学问题的途径与程序。实际上,关于学法及具体内容的研究,已成为当前教学研究的一个重点和热点。但对于学法的构成、内容等,广大教育工作者见解不一。
在学法构成上,有的认为学法是由学习习惯、思维方法、思维品质等因素构成;有的认为,学习方法不同于学习能力,也不同于学习习惯。在学法的具体内容上,有的认为学法主要指讨论的方法、自我辅导的方法、独立思考的方法、练习的方法和尝试的方法;有的认为学法主要指观察与比较、阅读课本、检验答案、记忆与检索、质疑与释疑、解题与验证、整理与归纳等方法。从分析数学学习活动可知,数学学习方法既受课堂教学的制约,又具有自身的一些特点。学习方法要用一个统一思想的标准来划分,并且列举出较全面的学法内容,确实很难。这里,我把教学方法分为两大类:第一类是与数学课堂教学相配合的学习方法,即一般的(或基本)的学习方法;第二类主要从科学的认识角度提出,为一般的科学思维方法,因为它与数学学科极为紧密。也可称为数学思维的一般方法。笔者谈谈第一类学习方法——如何进行学习方法的指导。
1、教给学生阅读课本的方法。
数学课本既是教师的教学之本,也是学生学习知识的依据。但是有的老师仅把它单纯地作为习题集,只在布置作业时,才让学生接受课本;有的老师偶尔要求学生翻翻数学课本,读读课本里的数学定义、法则等。这与指导学法、培养学生良好的学习习惯与自学能力相差甚远。教学生掌握阅读教材的方法,正是为了他们离开教师的辅导,能够自己看学习,具有一定的自学能力。
教给学生阅读课本的方法,主要指教会学生“粗、细、精”地阅读课本。所谓“粗读”就是浏览一遍教材,知其大意;所谓“细读”就是对教材要逐字句地读,要钻研教材的内容、概念、法则和公式,正确地掌握例题的格式;所谓“精读”就是要概括内容,最好能把自然段和单元段的概括文字写在教材的旁边,在深入理解教材的基础上进行适当记忆。当然,当学生大都比较熟练地掌握了这三种阅读方法之后,或对那些比较敏捷的学生来说,并不一定要求他们每次都机械地进行“三读”。
2、教给学生科学的记忆方法。
记忆是学生思维活动的基础,是智力的主要组成部分,也是学生获得数学知识,完成学习任务的必备能力之一。数学知识的记忆应用理解数学知识,完成学习任务的必备能力之一。数学知识的记忆应以理解为主,指导学生记忆的方法主要有以下几种;
(1)理解记忆法。就是通过学生的积极思维,依据事物的内在联系,在理解的基础上去记忆的方法。数学知识丰富多样,算题千变万化,光靠死记硬背是不行。所以,在教学中,教师要充分调动学生思维的积极性,让学生在理解的基础上记忆。例如:什么叫梯形。首先让学生通过认真观察,理解“只有一组对边”是什么意思,若把“只”字去掉又会怎样。通过积极思考,学生认知到“只有一组对边平行”就是四条边中相对的两条边为一组,其中一组平行,另一组不平行。这样学生在理解的基础上记忆梯形这个概念就容易了。
(2)规律记忆法。就是寻找事物内在规律,抓住其规律帮助记忆的方法。数学知识是有规律的,只要引导学生掌握其规律,就可以进行有效记忆。例如:记忆长度、面积、体积单位进率。因为长度单位相邻之间的进率是10,面积单位相邻之间的进率是100,体积单位之间的进率是1000。掌握了这个规律记忆就比较容易。
(3)形象记忆法。就是借助事物的形象或表象进行记忆的方法。小学生的思维以形象思维为主,逐步向抽象思维发展。在教学中,教师讲课时要注意生动、形象,以唤醒学生对事物的表象,进行形象记忆。例如,一年级数的认知教学时,老师把数与某些实物形象记忆:把“2”比作小鸭子、“3”比作耳朵等。
(4)比较记忆法。这是把相似、相近的数学材科学的进行对比,把握它们的相同点与不同点,加强记忆的一种方法。例如,整除与除尽,质数与互质数等,在学生理解后,引导学生进行比较记忆。
除此之外,还有归纳记忆法、应用记忆法、经济记忆法等。这些记忆方法既相对独立,又相互联系。
3、教给学生质疑问难的方法。
质疑是探索知识、发现问题的开始,爱因斯坦曾说:“提出一个问题比解决一个问题更重要”。学习要多问几个为什么,要指出疑问,才能有进步,正所谓:“于不疑有疑方是进矣”。质疑问题的学习方法,对于小学生来说,开始对于易提出疑问,需要教师启发引导,一旦有了这个习惯,他们会提出许多教师意想不到的疑问。
从何处着引导学生善于质疑问难呢?好奇、好动、好问、好表现自己,爱受表扬、是儿童的天性。课堂上给机会让他们发表看法,他们就会想问题、谈看法。因而,教师在设计教学过程时,要在每个环节留有余地,引导学生重点围绕老师、同伴和教材三个方面进行质疑。例如学习圆柱体的知识,让学生计算:
一只直圆柱水桶,底面直径2.8分米,高3分米,做这只小桶至少要用多少铁皮?至多能装多少水?(结果保留一位小数)
有的学生提出:为什么前一个问题中要加上“至少”后一个问题要加上“至多”两个字?是否可以省掉?这时,老师可告诉学生你计算后再仔细想一想。
①底面积:3.14×(2.8÷2)2=6.1544(dm2)
侧面积:3.4×2.8×3=26.376(dm2)
需要铁皮:6.1544+26.376=32.5304(dm2)
②容积:6.1544×3=18.4632(dm3)=18.4632(升)
然后让学生讨论,根据题目要求得数保留一位小数,怎么办?按“四舍五入法”行吗?有的学生说可以用“四舍五入法”取近似值,有的说不可以。学生的讨论变成争论,争论转化为辩论,课堂气氛非常活跃。最后同学们终于发现:所需铁皮32.5304平方分米,取近似值32.5平方分米的话,少一点点铁皮不能做成这只水桶;容积18.4632升,取近似值约可装水18.5升的话,则这只水桶会装不了,水会溢出来。所以遇到实际问题时,应灵活处理,前者要用“进一法”,需用铁皮32.6平方分米,后者要用“去尾法”能装水约18.4升。这样,学生由对教材的质疑展开讨论,思维得到拓展,提高了运用知识解决实际问题的能力。
4、教给学生复习的方法。
复习就是把学过的数学知识再进行学习,以达到深入理解、融会贯通、精练概括、牢固掌握的目的。学生对数学知识的学习,是包括一堂堂数学课累积起来的,因而所获得的知识往往是零碎的和片面的,时间一长,就会出现知识链条的断裂现象。基于这一点,单元复习和总复习都是很重要的。小学数学教学中,复习的方法主要有以下几点:
(1)概括复习。学生每学完一个小单元或一个大单元,就组织他们对于知识体系进行一次再概括,理出纲目,记住轮廓,列出重点,帮助他们掌握单元的主要内容。
(2)分类复习。引导学生把学过的知识和技能进行分类整理、分类比较,以加强知识的内在联系和知识的深度、广度,帮助学生加深理解与记忆。
(3)区别复习。把学过的相似的概念、规则等,如以区别、比较,掌握知识的特征。总之,一方面,复习要在理解教材的基础上,沟通知识间的内在联系,找出重点、关键,然后提炼概况,组成一个知识系统,从而形成或发展扩大认知结构;另一方面,通过复习,不断地对知识本身或从数学思想方法角度进行提高与精炼,是有利于能力的发展与提高的。
5、教会学生整理与归纳的方法。
整理知识是一项主要的学习方法。小学数学知识,由于学生认识能力的原因,往往分若干层次逐渐完成。一节课后、一个单元后或一个学期后,需要对所学知识进行整理与归纳,形成良好的认知结构,便于记忆和运用。
(1)把知识串成“块”,形成知识网络。
小学几何初步知识涉及到五线(直线、线段、射线、垂线、平行线)、六角(锐角、直角、钝角、平角、周角、圆心角)、七形(长方形、正方形、三角形、平行四边形、梯形、圆形、扇形)五体(长方体、正方体等)教完几何后,把七种平面图形组成一个知识网络。
(2)系统整理成表,便于记忆运用。按照数学知识的科学体系和小学生的认识规律,小学几何初步知识分散在小学各册实现教材中。在总复习中,教师应避免罗列和重复以往知识,而应恢复几何初步知识原有的知识体系和法则,按点、线(角)、面、体四大部分知识认真系统地归纳整理成表,使之在学生头脑中条理化、系统化、网络化,便于记忆与运用。
6、教给学生知识迁移的方法。
迁移是指已获得知识、技能乃至方法和态度对学习新知识新技能的影响。先前学习对后继学习起积极、促进作用的,纠正迁移,反之纠负迁移。人们在解决新课题时,总是利用已有的知识技能去寻找解决问题的方法。数学是一门逻辑性、严密性极强的学科,它的知识系统性强,前面的知识是后面的基础,后面的知识是前面知识的延伸与发展。所以教师必须紧紧抓住前后知识的内在联系,教给学生知识迁移的方法。
在学法构成上,有的认为学法是由学习习惯、思维方法、思维品质等因素构成;有的认为,学习方法不同于学习能力,也不同于学习习惯。在学法的具体内容上,有的认为学法主要指讨论的方法、自我辅导的方法、独立思考的方法、练习的方法和尝试的方法;有的认为学法主要指观察与比较、阅读课本、检验答案、记忆与检索、质疑与释疑、解题与验证、整理与归纳等方法。从分析数学学习活动可知,数学学习方法既受课堂教学的制约,又具有自身的一些特点。学习方法要用一个统一思想的标准来划分,并且列举出较全面的学法内容,确实很难。这里,我把教学方法分为两大类:第一类是与数学课堂教学相配合的学习方法,即一般的(或基本)的学习方法;第二类主要从科学的认识角度提出,为一般的科学思维方法,因为它与数学学科极为紧密。也可称为数学思维的一般方法。笔者谈谈第一类学习方法——如何进行学习方法的指导。
1、教给学生阅读课本的方法。
数学课本既是教师的教学之本,也是学生学习知识的依据。但是有的老师仅把它单纯地作为习题集,只在布置作业时,才让学生接受课本;有的老师偶尔要求学生翻翻数学课本,读读课本里的数学定义、法则等。这与指导学法、培养学生良好的学习习惯与自学能力相差甚远。教学生掌握阅读教材的方法,正是为了他们离开教师的辅导,能够自己看学习,具有一定的自学能力。
教给学生阅读课本的方法,主要指教会学生“粗、细、精”地阅读课本。所谓“粗读”就是浏览一遍教材,知其大意;所谓“细读”就是对教材要逐字句地读,要钻研教材的内容、概念、法则和公式,正确地掌握例题的格式;所谓“精读”就是要概括内容,最好能把自然段和单元段的概括文字写在教材的旁边,在深入理解教材的基础上进行适当记忆。当然,当学生大都比较熟练地掌握了这三种阅读方法之后,或对那些比较敏捷的学生来说,并不一定要求他们每次都机械地进行“三读”。
2、教给学生科学的记忆方法。
记忆是学生思维活动的基础,是智力的主要组成部分,也是学生获得数学知识,完成学习任务的必备能力之一。数学知识的记忆应用理解数学知识,完成学习任务的必备能力之一。数学知识的记忆应以理解为主,指导学生记忆的方法主要有以下几种;
(1)理解记忆法。就是通过学生的积极思维,依据事物的内在联系,在理解的基础上去记忆的方法。数学知识丰富多样,算题千变万化,光靠死记硬背是不行。所以,在教学中,教师要充分调动学生思维的积极性,让学生在理解的基础上记忆。例如:什么叫梯形。首先让学生通过认真观察,理解“只有一组对边”是什么意思,若把“只”字去掉又会怎样。通过积极思考,学生认知到“只有一组对边平行”就是四条边中相对的两条边为一组,其中一组平行,另一组不平行。这样学生在理解的基础上记忆梯形这个概念就容易了。
(2)规律记忆法。就是寻找事物内在规律,抓住其规律帮助记忆的方法。数学知识是有规律的,只要引导学生掌握其规律,就可以进行有效记忆。例如:记忆长度、面积、体积单位进率。因为长度单位相邻之间的进率是10,面积单位相邻之间的进率是100,体积单位之间的进率是1000。掌握了这个规律记忆就比较容易。
(3)形象记忆法。就是借助事物的形象或表象进行记忆的方法。小学生的思维以形象思维为主,逐步向抽象思维发展。在教学中,教师讲课时要注意生动、形象,以唤醒学生对事物的表象,进行形象记忆。例如,一年级数的认知教学时,老师把数与某些实物形象记忆:把“2”比作小鸭子、“3”比作耳朵等。
(4)比较记忆法。这是把相似、相近的数学材科学的进行对比,把握它们的相同点与不同点,加强记忆的一种方法。例如,整除与除尽,质数与互质数等,在学生理解后,引导学生进行比较记忆。
除此之外,还有归纳记忆法、应用记忆法、经济记忆法等。这些记忆方法既相对独立,又相互联系。
3、教给学生质疑问难的方法。
质疑是探索知识、发现问题的开始,爱因斯坦曾说:“提出一个问题比解决一个问题更重要”。学习要多问几个为什么,要指出疑问,才能有进步,正所谓:“于不疑有疑方是进矣”。质疑问题的学习方法,对于小学生来说,开始对于易提出疑问,需要教师启发引导,一旦有了这个习惯,他们会提出许多教师意想不到的疑问。
从何处着引导学生善于质疑问难呢?好奇、好动、好问、好表现自己,爱受表扬、是儿童的天性。课堂上给机会让他们发表看法,他们就会想问题、谈看法。因而,教师在设计教学过程时,要在每个环节留有余地,引导学生重点围绕老师、同伴和教材三个方面进行质疑。例如学习圆柱体的知识,让学生计算:
一只直圆柱水桶,底面直径2.8分米,高3分米,做这只小桶至少要用多少铁皮?至多能装多少水?(结果保留一位小数)
有的学生提出:为什么前一个问题中要加上“至少”后一个问题要加上“至多”两个字?是否可以省掉?这时,老师可告诉学生你计算后再仔细想一想。
①底面积:3.14×(2.8÷2)2=6.1544(dm2)
侧面积:3.4×2.8×3=26.376(dm2)
需要铁皮:6.1544+26.376=32.5304(dm2)
②容积:6.1544×3=18.4632(dm3)=18.4632(升)
然后让学生讨论,根据题目要求得数保留一位小数,怎么办?按“四舍五入法”行吗?有的学生说可以用“四舍五入法”取近似值,有的说不可以。学生的讨论变成争论,争论转化为辩论,课堂气氛非常活跃。最后同学们终于发现:所需铁皮32.5304平方分米,取近似值32.5平方分米的话,少一点点铁皮不能做成这只水桶;容积18.4632升,取近似值约可装水18.5升的话,则这只水桶会装不了,水会溢出来。所以遇到实际问题时,应灵活处理,前者要用“进一法”,需用铁皮32.6平方分米,后者要用“去尾法”能装水约18.4升。这样,学生由对教材的质疑展开讨论,思维得到拓展,提高了运用知识解决实际问题的能力。
4、教给学生复习的方法。
复习就是把学过的数学知识再进行学习,以达到深入理解、融会贯通、精练概括、牢固掌握的目的。学生对数学知识的学习,是包括一堂堂数学课累积起来的,因而所获得的知识往往是零碎的和片面的,时间一长,就会出现知识链条的断裂现象。基于这一点,单元复习和总复习都是很重要的。小学数学教学中,复习的方法主要有以下几点:
(1)概括复习。学生每学完一个小单元或一个大单元,就组织他们对于知识体系进行一次再概括,理出纲目,记住轮廓,列出重点,帮助他们掌握单元的主要内容。
(2)分类复习。引导学生把学过的知识和技能进行分类整理、分类比较,以加强知识的内在联系和知识的深度、广度,帮助学生加深理解与记忆。
(3)区别复习。把学过的相似的概念、规则等,如以区别、比较,掌握知识的特征。总之,一方面,复习要在理解教材的基础上,沟通知识间的内在联系,找出重点、关键,然后提炼概况,组成一个知识系统,从而形成或发展扩大认知结构;另一方面,通过复习,不断地对知识本身或从数学思想方法角度进行提高与精炼,是有利于能力的发展与提高的。
5、教会学生整理与归纳的方法。
整理知识是一项主要的学习方法。小学数学知识,由于学生认识能力的原因,往往分若干层次逐渐完成。一节课后、一个单元后或一个学期后,需要对所学知识进行整理与归纳,形成良好的认知结构,便于记忆和运用。
(1)把知识串成“块”,形成知识网络。
小学几何初步知识涉及到五线(直线、线段、射线、垂线、平行线)、六角(锐角、直角、钝角、平角、周角、圆心角)、七形(长方形、正方形、三角形、平行四边形、梯形、圆形、扇形)五体(长方体、正方体等)教完几何后,把七种平面图形组成一个知识网络。
(2)系统整理成表,便于记忆运用。按照数学知识的科学体系和小学生的认识规律,小学几何初步知识分散在小学各册实现教材中。在总复习中,教师应避免罗列和重复以往知识,而应恢复几何初步知识原有的知识体系和法则,按点、线(角)、面、体四大部分知识认真系统地归纳整理成表,使之在学生头脑中条理化、系统化、网络化,便于记忆与运用。
6、教给学生知识迁移的方法。
迁移是指已获得知识、技能乃至方法和态度对学习新知识新技能的影响。先前学习对后继学习起积极、促进作用的,纠正迁移,反之纠负迁移。人们在解决新课题时,总是利用已有的知识技能去寻找解决问题的方法。数学是一门逻辑性、严密性极强的学科,它的知识系统性强,前面的知识是后面的基础,后面的知识是前面知识的延伸与发展。所以教师必须紧紧抓住前后知识的内在联系,教给学生知识迁移的方法。
- 【发布时间】2019/3/10 19:14:19
- 【点击频次】545