期刊正文


转化思想在小学数学教学中的应用浅谈

 

【作者】 李 莉

【机构】 四川省隆昌市龙市镇中心学校

【摘要】

【关键词】
【正文】  摘 要:转化思想是一种常用的数学思想,是解数学题的一种重要的思维方法,也是分析问题、解决问题的一种重要的基本思想,许多数学思想都是转化思想的体现。因此,在小学数学教学中,教师应充分利用转化思想,为此,本文主要探讨了从转化思想角度分析小学数学知识结构,用转化思想指导数学方法、解决数学问题,以及转化思想的教学实效。
  关键词:转化思想;小学数学;应用
  数学是逻辑思维、抽象思维较强的学科,而小学生正处于形象思维活跃、抽象逻辑思维较为薄弱的极端,转化思想在数学中有助于优化解题方法,揭露数学问题的本质等。因此在小学数学教学中,教师必须有意识地训练学生转化思想,促进学生数学学习上的长足发展。
  一、新知联系旧知,实现转化
  在数的运算、几何知识的教学中,处处应用转化的思想。在数的运算教学中,把小数乘法、除法转化成整数乘法、除法,分数除法转化成分数乘法等等;在几何知识的教学中,都是把平面图形的面积公式与立体图形的体积公式等的推导过程转化成已学过的图形进行……这些,足以说明转化法在小学数学教材中是运用得比较多的。教师要通过教学不断地让学生了解、认识数学的转化方法,逐步学会应用转化的方法解决问题。例如,在“异分母分数的加法”的教学中,出示例题,分析题意后学生列出了算式:1/2+1/4,可以先让学生比较:这道算式与昨天学的算式有什么不同?分母不同,那结果是多少?并让学生通过折纸,画图等方法,得出了答案。在让学生思考过程中,教师进行对比总结,学生用的方法不同,但都是运用了同一种数学思想――转化的思想,把1/2+1/4转化成分母相同的分数再相加的,从而得出异分母分数加减法的计算方法。
  等量代换,实现转化
  有些数学题给出了两个或两个以上未知数量之间的等量关系,通过等量代换,可以使题目的数量关系单一化。从而求出某未知量。如:1只西瓜的重量等于3只香瓜的重量,5只苹果与2只香瓜同样重,1只西瓜的重量等于(    )只苹果的重量。根据5只苹果与2只香瓜同样重,得出1只香瓜等于2.5只苹果,再把3只香瓜替换成7.5只苹果。还有单一的等量代换,如:在一个底面半径为5厘米的圆柱形容器中放入一块不规则的铁块(全部浸没),水面上升了6厘米,这个铁块的体积是多少立方厘米?学生可以求出放入铁块后上升的水的体积,根据上升的水的体积就是不规则铁块的体积来进行等量代换从而求出不规则铁块的体积。
  二、化繁为简,优化解题策略
  在处理和解决数学问题时,常常会遇到一些运算或数量关系非常复杂的问题,这时教师不妨转化一下解题策略,化繁为简。反而会收到事半功倍的效果。
  例如:在教学植树问题时,出示例题:同学们在全长100m的小路一边植树,每隔5m栽一棵(两端都栽)。一共要栽多少棵树?
  引导学生理解题意,大胆猜测,并开始验证时。看来这个问题值得我们研究,可100米有点长,研究起来不方便,怎样才能使我们的研究更方便呢?把小路缩短,我们就将原来的复杂的问题变得简单了。那下面我们就将小路缩短到20米来研究。
  这时,学生在转化思想的影响下,茅塞顿开,将一道生活中的数学问题既形象又有创意地解决了。从这里可以看出:学生掌握了转化的数学思想方法,就犹如有了一位“隐形”的教师,从根本上说就是获得了自己独立解决数学问题的能力。
  三、化曲为直,寻找直观有效的解题方法
  学生来学的不是一些简单的公式,定理。主要是学会怎么想问题,用什么方法想问题,这个问题与什么东西有关,能不能用以前学过的知识来解决呢?
  例如:用割补的方法求平行四边形的面积;在学习三角形、梯形、圆的面积计算时,都是通过剪拼的方法,把要研究的图形转化成前面已学过的图形来推导出它的面积公式。这里的关键是如何让学生领悟转化的思想方法,同时在“转化”的过程中培养学生的实践创新能力,进而提高学生的解决问题的能力。
  有一次,爱迪生把一只电灯泡的玻璃壳交给他的助手阿普顿,要他计算一下灯泡的容积。阿普顿看着梨形的灯泡壳,思索了好久之后,画出了灯泡壳的剖视图、立体图,画出了一条条复杂的曲线,测量了一个个数据,列出了一道道算式。经过几个小时的紧张计算,还未得出结果。爱迪生看后很不满意。只见爱迪生在灯泡壳里装满水,再把水倒进量杯,不到一分钟,就把灯泡的容积“算”出来了。
  四、数量与图形间的转化
  数量与图形间的转化运用很广泛,中学有函数的数形结合的思想方法,小学阶段表现在我们在讲授新知识或解决数学问题时,为了直观形象,通过画图的方式来表示数量关系,利用数量关系在图上的分部和变换规律从而解决问题。如各类图形面积的计算方法,公式的由来,均采用让学生动手实验,先将图形转化为已经学过的图形,在图上观察探索转化后的图形与原来图形的关联。如平行四边形面积的推导,是在图上把平行四边形变换成长方形,从而得到平行四边形的面积与长方形面积的计算是同一个道理。
  又如,对于低年级中9的口诀,可组织学生在10乘l0的方格纸上涂色。1个9,第一行涂9个,l0少1;2个9,涂2行,20少2……如此下去,简明直观,一目了然。这就把把抽象的数学知识与具体的图形结合起来,便于年幼的学生理解,让每个孩子都能积极主动的参与教学活动,提高学习效率。
  总之,“思想是数学的灵魂,方法是数学的行为。”数学教学内容始终反映着数学基础知识和数学思想这两个方面,没有脱离数学知识的数学思想,也没有不包含数学思想的数学知识。因此,教师在小学数学教学中,应当结合具体的教学内容,渗透数学转化思想,从而促进学生数学素养的全面提升。
  参考文献:
  [1]浅谈转化思想在小学数学教学中的渗透[J].蔡玉玲.学周刊.2016(04).
  [2]浅谈转化思想在小学数学教学中的渗透[J].凌德元.学苑教育.2015(03).
  [3]让转化思想在小学数学课堂中绽放[J].陈根玉.黑河教育2015年10期.
  • 【发布时间】2020/11/5 16:24:09
  • 【点击频次】488